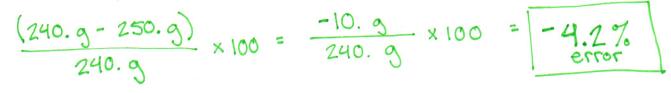
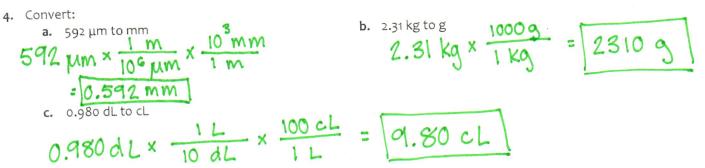
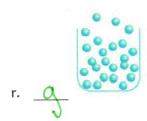

Unit 1 Part 13: EZPZ Review

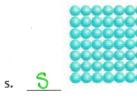
This is called an "E-Z-P-Z" Review. This review only hits the basic and foundation of the unit. The extended and more difficult questions were on your QUEST homework so look there! © This is just to make sure you at least know the **basics**!

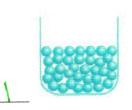

Consider the results of three students who repeatedly weighed a lead block known to have a true mass of 10.00 g (indicated by the solid horizontal blue line on the graphs).


and the second se	0.700	A And A	0.050
Average	10.13 g	9.79 g	10.01 g
Trial 4	10.31 g	9.80 g	9.98 g
Trial 3	9.92 g	9.75 g	10.03 g
Trial 2	9.79 g	9.82 g	9.99 g
Trial 1	10.49 g	9.78 g	10.03 g
	Student A	Student B	Student C

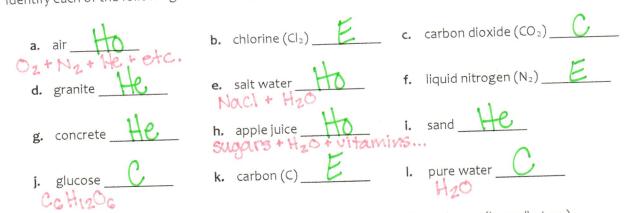
- a. Which student was both inaccurate and imprecise? 🗡
- b. Which student was accurate and precise? 🕻
- c. Which student was inaccurate, but precise? 🏅
- 2. Measure or calculate to the correct number of significant figures:



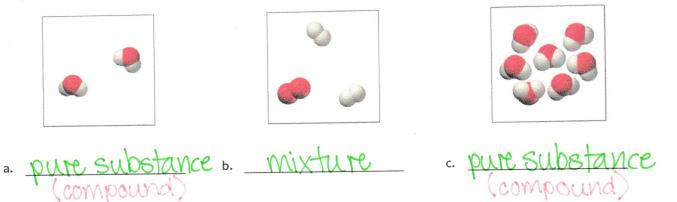

3. A student measured a mass to be 250. But the actual mass was 240. g. What is the percent error (in the correct number of sig figs)?



- 5. States of Matter: Matching! Label each property as solid (s), liquid (l), or gas (g). Some questions may have more than one correct answer! Each answer may be used more than once!
 - a. Particles take the shape of their container.
 - c. S. Particles have definite volume.
 - e. _____ Particles have indefinite volume.
 - g. _____ Particles may easily be squished closer together.
 - i. S Particles keep their own shape no matter what container they're in.
 - k. S Particles have definite shape.
 - m. <u>S</u> Particles are the least compressible.
 - o. <u>A</u> Particles spread out to fill their entire container.
 - **q.** <u>A</u> Particles can compress to fit into a smaller container.



- b. <u>Aq</u> Particles of the substance are dissolved in water. (for aqueous!)
- d. ____ Particles flow past each other.
- f. _____ Particles are the most compressible.
- h. <u>J.</u> Particles have indefinite shape.
- j. _____ Particles move all over.
- I. <u>S</u> One example is paper.
- n. Spl Particles keep their own volume no matter what container they're in.
- p. <u>S</u> Particles cannot be squished closer together. (liquids can be squished a tiny bit)



52

53 6. Identify each of the following as: element (E), compound (C), heterogeneous (He) or homogeneous (Ho).

7. Classify whether the picture is a pure substance (element/compound) or mixture (homo/hetero):

- 8. Determine whether each of the following is a physical or chemical change.
 - Iron rusts from exposure to the oxygen gas in the air, forming reddish brown flakes.

chemica Oxidation is chemical. New substance is formed.

b. Delicious sugar (glucose) is dissolved into tea.

 $C_{22}H_{18}O_{11}(aq) + C_6H_{12}O_6(s) \rightarrow C_{22}H_{18}O_{11}(aq) + C_6H_{12}O_6(aq)$ sugar

Fe(s) + O2(g) → FeO2(s) new Fe-0 bonds

are chemical. Bonds have broken, new substances form.

c. Hydrogen peroxide decomposes into hydrogen gas and oxygen gas.

 $H_2O_2(I) \rightarrow H_2(g) + O_2(g)$ chemica

H-O bonds have broken

Decompositions d. Ethanolevaporates.

physical Phase changes are physical. No new substances form.

 $C_2H_6O(I) \rightarrow C_2H_6O(g)$ ethanol -> ethanol 54

physical OR a chemical property. Determine if it is an extensive OR an intensive property. 9.

etermir	ne if it a physical OR a chemical proper Property	Physical Property	Chemical Property	Extensive Property	Intensive Property
а.	magnetism	~			<u> </u>
b.	malleability (can be hammered thin)	\checkmark			~
с.	temperature	\checkmark			~
d.	flammability		\checkmark		
	red color	~			~
e.	reacts violently with sodium		~		~
f.		~		\checkmark	
g.	length	1		\checkmark	
<u>h.</u> i.	mass produces a different gas when heated (decomposition)		~		 ✓
i.	dissolves in water	\checkmark			~
k.	rough texture	~			
1.	sweet taste	\checkmark			
m.	density	\checkmark			
n.	toxicity		~		~
о.	sour taste	~			~
p.	melting point	~			~
q.	boiling point	~			
r.	hardness	\checkmark			
s.	luster (how shiny it is)	\checkmark			
t.	odor	~			\checkmark

10. Density:

a. Calculate the density of mercury if 1.00x10² g occupies a volume of

$D = \frac{M}{M} = \frac{1.00 \times 10^2 g}{7.36 \text{ cm}^3} = 13.5869 \approx 13.69 \text{ cm}^3$	TABLE 1.4 The Density of Some Common Substances at 20 °C	
D= V = 736 cm 3 15.0001 ~ 15.6 /cm3	Substance	Density (g/cm ³)
1.000.	Charcoal (from oak)	0.57
b. A container is holding 212.1 g of water.	Ethanol	0.789
i. What is the volume of water in the container? Would to 11	lce	0.917 (at 0 °C)
$1.00 = \frac{212.19}{1.00}$ QR $212.19 \times \frac{1.00 \text{ cm}^3}{1.009} = 212.1 \text{ cm}^3$	Water	1.00 (at 4 °C)
1.00 =	Sugar (sucrose)	1.58
V: ZIZ. I CM ³ i. What is the density of water? 1.00 3 Cm ³ Cm ³ Scientific constant iii. Would charcoal float in water? (Use the chart to the right.)	Table salt (sodium chloride)	2.16
1.00 ycm > (infinite sig figs)	Glass	2.6
iii. Would charcoal float in water? (Use the chart to the right.)	Aluminum	2.70
Yes! Charcoal is less dense.	Titanium	4.51
	Iron	7.86
c. The mass of an unknown object is 115.92 g and the volume is 6.00 cm ³ .	Copper	8.96
i. What is the density of the object?	Lead	11.4
D.M. 115.920 - 192 2 19 2 2	Mercury	13.55
$D = \frac{M}{V} = \frac{115.92}{G.00 \text{ cm}^3} = 19.32 \approx 19.3\frac{9}{\text{ cm}^3}$	Gold	19.3
	Platinum	21.4
ii. Using the chart to the right, identify the unknown object.		